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A, Erdeiyi and C, He Papas

introduction

The problem of diffraction by an infinite strip or slit has been the
subject of seversl investigations(l). There are at least two "exact" methods
for attacking this problem, One of these is the integral equation method,(z)
the other the Fourier-Lams method.(3) The integral equation obtained for
chis problem cannot be solved in closed formj expansicn of the solution in
powers of the ratio (sirip width/wavelength) leads to useful formulas for low
freavencies, In the Fourier-lame method thc wave aquation is separated in
coordinates of the elliptic cylinder, the solution appears as an infinite
seriees of Mathieu funciions, and the usefulness of the result is limited by
the convergence of these infinite series, and by the available tabulation of
Mathieu functicns,

The variational technique davelcpsd by Levine and Schwinger avoids
soms cf the dfficulties of the above-mentioned methods and, at least in
principle, is capable of furnishing good approximations for &ll frequency-
ranges. The scattered field may be represented as the effect of the current
induced in the strip, and it has been proved by Levine and Schwinger(h) that
it is possible to represent the amplitude of the far-zone scattered field in
tarms of the induced current in a form which is stationary with respect to
small variations of the current asbout the true current. Substitution, in
ihls representation; of a rough approximation for the current mey give a re=-
markably good approximation of the far-zone scattered field amplitude. Iin
this note we assume a normally incident fileld polarized parallel to the gen-
erators of the strip. As & rough approximation; we tske a uniform density of
the current induced in the strip. Since the incident magnetic field is

’l
congtant over the strip, Fock's theory(’) may be cited in support of the



“Zm
uniformity of the curient distribution, except near the edges where the be-
haviouwr of ihe field(-m indicstes an Infinite o
detailed analysis ot the current, Dy Moulilin and Fuillips 3) , 18 avalilav
but was not ussd hers.

Once thc (approximate) ampliiude of the far-zone field has been ot~
tained, the scattering cross-section may be found by the application of tas

(Ly7,8)

scattering theorem which relates this cross-section to the imaginary

part of the amplitude of the far-zone scattered field along the central line
of the umbral region. In spite of the crude approximation adopted for the
induced current, the scattering cross-section shows a fair agreement with
other aveilable results,

Integral Fquation

We assume s plane wave with harmonic time dependence exp(-iwt),

normally incident on the perfectly conducting infinitesimally thin strip

of width 2a,
. 2=0, -azy<a. (1)

We further assume that the incident wave is polarized parallel to the edgesa
of the strip (1.e. to the x axis) so that the only nonvanishing components
of its electric field E, magnetic field H, and complex Poynting vector S

{all measured in MES units, tars denoting conjugate complex numbers)

Exi = exp(ikz) (2)
Hyi = k/(op) exp(ikz) (3)
s; = E BT = k/(ap) (4)

The scattesred electric field is again parallel to the x axis, and the

total eiectric Iieiu is the sum of the incident and scattered field,

Ex(y,2) = B} (5.2} + E *%(y,2) (5)

*



The boundary condition on the screen is the vanishing of tha electric field

n /7

v o) = )
Lyiy,0/ =

for es<y<asa ; (&}

(]

and the scettered field, ‘._"’c, musi represent, at large distanceés {rom the
screen, an outgoing cylinarical wave (Sormerfeld's radiation cendition).
The expression of the total electric field in terms of the induced

current K.(y) is

a
(1) 1/2 _
E (¥s2) = exp(ikz) - wu/l jyo‘l ik [7 - ¥0% ¢ 270 Kyt (1)
-3 P,

(1) 2 . 2|12
i/L Ho (k [(y-y') + 2 ] ) beirg the two-dimensional free-spece Oreen's
function. The scattered field in (7) certainly satisfies Sommerfeld's radia-

tion condition; in order that it aiso satisfies (6), we must have

a
1eow/b [1 ) kly-y ) KGO @ |yia (8)
-f

and this is the integral equation of our problem.

Far-Zone Scattered Fieid Amplitude

We define the far-zone scattered field amplitude A{F) by

E,5C~-1/L [2/(n 1kp )] Y exp(ikp) A(P) ko —>» @0 (9)

where pcos =2z and p sin @=-y; this expression represents a cylindrical
outgoing wave of "amplitude" A.

Since

Al (k[(y-'y')2+22]1/2) [2/(n1x0)] Y entiior iyt otn )

3 E L 1n)
\ &V

when kp—»o00, we have from (7), for large kp,

a
Exs°~i/h [2/(nikp§|1/2 exp(ikp)f 1wp exp(iky! sin @) ]S‘(yl) dy* {11)



Comparing (9) and (11) we gnt

[

A(g) = dop Mj exp(iky' sin ¢) K_(v') av* (12)
<a

A Scattering Theorem

If ? donotes the scattered energy flux per unit length, then the

scattering crogss-section o~ is defined by

o’ = P/S (13)
where S = 1/2 Re S:i- k/(2wi) is the incident erergy flux per unit area,
a a
P =1/2 Re jExi (v,0) K _(y') dyi = 1/2 Refo(y') dy? (1k)
since Eg} =1 at 2z =0, Hence,
a
o’ = wu/k Re f X (y') ay (15)
-a
But from (12)
a
MO0) = top [ K" oy (26)
~a

Therefore, comparing (15) and (16) we get

g’ = Im A(0)/k

~~~
[

~i

A

It may be remarked that in tne iimit for very high frequencles, the
cross-section (17) turns out to be iwice the projected area, At iirst sight
the factor two may seem inconsistent with geometrical optics, but actually
the disecrepancy is due to the different definitions of the scattering cross
(¢)

gection,
Variational Principle

We multiply the integral equation (8) by Kx(y), integrate from y =-~a
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&
ts y=+a, divica by the square of uf Kx(}}dy, and then recall (16). Thus

-a

a 2
[ Ke (52 dy]

A(O)= bs  —— - (18)
ff"x“” # Dk y-5]) K (y") & day*

In Appendix 4 it is shown that the expression (18) is stationary with res-
pect to small variations of Kx about, the true K. which satisfiss the integral
equation (8)., Consequently, if ws substitute a reascnable trial function for
the unknown K, in {18), we expect to cbtain a reasonably accurate value of
A(0),

Trial Function

g
According to Foch's theory' (52 the current induced in the central

region of the strip is equal to twice the tangentisl component of the in-
cident magnetic field. 4ind according to Bouwkamp(é) Hy must have & singue

~1/2 at the edges. This certainiy conforms to the
(3)

larity like (a2 -y2)
detailed information Moullin and Phillips reported, In the prosent paper
we take for a trial function K (y) = 1, thus ignoring the effect of the

edges,
Scattering Cross Ssclion

With K*(Y) « 1, computation (see Appendix B) shows that (18) be-

comes

2ka
[A(O)l-l - (hiak)-l{J( Ho(l) (t)dt-Hl(l) (2ka) + (nika)'gl (19)

0

And applying the theorem (17) to (19), we get
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?ksj‘
l( J O {2)A - J (2ka) s
”é - Y (€G)
o /(ka) = r2k{€: 1, [2ka T -]2
IJ Iy (t)dt-J1(2kaJ +I f Yo(t)dt-Yl(Zka)-(nka)-]]
L% %
(10)

A plot of. 6~/(La} versus ka is shown in the graph. This is =
plot of eq.(20). For small ka we have Rayleigh scattering, As ka in-
creases the curve performs a demped oscillation about ¢~/{La) = 1, And
for ka —o0it can be shown by means of asymptotic representations of Besssl
functions and their integrals that ¢”—-la.

According to Babinet's principle(ll) the problem we have dis-
cuséed is complenmentary to the problem of scattering by a slit for a nor-
mally incident wave polarized perpendicular to ths exis of the slit. For
intermediate vslues of ka our curve behaves qualitatively as Morse and
Rnbinstain's(l)z the quantitative ugreement is not very good, the devia-
tion being due to cur choice of an overly simplified trial function. It
is quite remarkable how such a rough aprroximation of the induced current

yields fairly good results over the entire spectrum,
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A=l
Appendix A

We show nere that A(0) of (18) ic ctetiorery with rocpost 4o small

variations of Kx(y) about the true 5&(3’) which satisfies the inlegral

equation (8).

From (18) and the calculiis of variations it follows that
a &
oa ([ (K@ 8D (kiy-g) K ) oy a0
J J ° x
«a =a

¢ A ? ?5K,.(y)H(1) (k ly=-y'l) K (y*) dy dy!
J J =m0 & X

a a
¢+ A .,( f ]&(y) HO(J-) (k \y-y'l) 5 Kx(yl) dy dy!' =

=8 =8
a a
2 | 6§ K(y)dy K (y) dy .
e 3%

Hearranging terms we get

a
54 / Kx(y) He(l) (kly-y'D) Kx(y') dy dy' =
-f

a a &a
{ 3 y s 1) - ' 2
)& K \y) oy fo(yz dy‘ A.[ Ho( (k|y=-y'1) K (y') ay* 3

=3

<a
a (a a N
~
v [ (y')dy*4 { K (y)dy = A (H M) ey -y K (y) ay § .
J x zJ x J o x
wf, =9 -l
The right side »f this equation disaprears for small arbitrary variations
6 X, (y) because theaquantities in curly brackets are zero by virtuve of (12),

1.9,, A(0) = 1w rKv(y)dy, and the integral equation {8). Consequently
J x

-’
6§ A = 0 and the expression (18) is stationary.



A=2

Far trisl function Kx{y) ~ constant, (10} becomes
a a
1 1 ( () .\
= ., ! L sy’ ]
A(C) 16 1 a2 J\' J H, (xly -vtj) dy dy
-3 -a

k (y=v') =t . Then

1 ggﬁo{l) (It]) ds at

~
-

Put k(y+y') = s,

1
A(0) © 321 (ka)?

S

where S 1s the square with vertices (* 2ka,0), (0,+ 2ka) .

2ka

let Q be the quadrant s3>0, t>0, s + t<2ka. Then
f (2ka-t)!l°(1)(t)dt.

- S (1) (4) gt « —enmes
A(0)  B1 (ka)? {{Ho (&) s 81 (ka)?

Q

2ka
{1 Zi
Since f t HO(])(t)dt = 2ka Hl‘*), (2ka) +<~ , the above equation becomes

0 1 )

1 . 21?_
e 0 i s’ (l) e (1) 3 i
M0}  Lika (4 H4bie = My s da) * S K
0
And this 1s (19).
t
A
+ 2ka
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